If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.25x^2-10x=0
a = 1.25; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·1.25·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*1.25}=\frac{0}{2.5} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*1.25}=\frac{20}{2.5} =8 $
| 93-39=x | | 82-28=x | | 85=175x-16x^2 | | 6+35x=21+24 | | 7=2z+27 | | 3x-4x=7-12 | | 5a-5=17 | | 5a+a+10a+2=15a+5 | | 2(6s)+6s=588 | | -2x+3=4,25 | | 8+x/3=40/5 | | 161=94-y | | 12/20=18/y | | 5(d-6)+7=4(d+5) | | 283=-y+12 | | 50-4.905t^2=25t-4.905t^2 | | (1500+100)/0.75=a | | 10x+43=13-5x | | 11,384=x+0.15x | | (1500+100/0.75=a | | (1)/(2)x+7=3x-18 | | 40=10+8x | | 1/3(n+2)=5 | | G(n)=n+5 | | P(n)=4n-2 | | P(n)=4n | | G(n)=2n-4 | | W(n)=2n-3 | | x-3/4=16+5 | | 11,384=x+0.15x. | | 5a+9=1/a | | 60+10y=15 |